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ABSTRACT: The nonlinear properties of materials can
couple with nonlinear geometries in component applica-
tions producing surprising overall system responses.
Hence materials must be designed for particular, compo-
nent level, applications, taking into account the component
geometry, to achieve optimal performance. Here we focus
on the compressive stress–strain and load-deflection char-
acteristics of soft, polymeric foams in nonlinear geome-
tries. The model system for these coupled nonlinearities is
the thin layer of foam contained between two initially con-
centric spheres. We find that a nonlinear component-level
response is exhibited with nonlinear geometries, even with
a material whose compressive stress–strain response is
linear. Polymeric foams exhibit a modified system-level
response that is not apparent from standard viscometric

testing results. The spherical geometries tend to concen-
trate the force in a more localized area of the foam, as
opposed to the force distribution seen in linear materials,
and this gives greater importance to the higher strain
regions of the foam stress–strain response. In addition the
geometry diminishes the contribution to the mechanical
response in the low to middle range of the stress–strain
response curve. These findings have provided critical
insights to material designers who are engineering new
generations of materials with enhanced component-level
performance. VVC 2008 Wiley Periodicals, Inc. J Appl Polym Sci
110: 1704–1713, 2008
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INTRODUCTION

Solid polymeric foam materials are cellular in nature
and have nonlinear viscoelastic properties. This is in
contrast with many familiar solid materials that
have an essentially linear-elastic or Hookean
response. Compressing a typical linear material uni-
axially between two flat plates will result in two no-
ticeable effects. The amount of strain will be directly
proportional to the amount of stress applied to the
material, and the material will expand outwardly, in
the tangential direction relative to the two plates.
The proportionality between the stress and the strain
is the elastic modulus, and the amount of outward
expansion is related to the Poisson ratio. The same

experiment performed on a nonlinear foam material
will result in somewhat different behavior. The
stress will not be directly proportional to the
imposed strain but will have a nonlinear functional
relationship with the strain.
Two images of polymeric foam are presented in

Figure 1. These images are all of open cell, hydrogen
blown, polydimethylsiloxane (PDMS) foam samples.
Images (a) and (b) are light microscope images of a
sample of foam that has been cut cleanly along the
visible side. This foam has a recovered thickness of
1 mm, as seen in image (a), where the foam is
uncompressed. Image (b) shows the foam sample as
it is compressed between two parallel plates (note
the nonaffine strain). These images show what the
microstructure of the PDMS foam looks like and how
the microstructure changes during compression.
Open-cell polymeric foams present many chal-

lenges in understanding the underlying causes of
their nonlinear mechanical behavior. New constitu-
tive relations are developed regularly as more and
more physical attributes of the cellular materials are
incorporated into the models.1 The current state of
understanding of the mechanical properties of foam
is continuing to develop and has been described in
reviews by Gibson and Ashby,2,3 Gibson,4 Hilgen-
feldt et al.,5 and Liu and Subhash.1 The nonlinear
elastic behavior of foam is discussed by Warren and

Journal ofAppliedPolymerScience,Vol. 110, 1704–1713 (2008)
VVC 2008 Wiley Periodicals, Inc.

The authors gratefully acknowledge the partial funding
for this project that was provided by the Los Alamos
National Laboratory Directed Research and Development
Program. This financial support does not constitute an
endorsement by the DOE of the views expressed in this
article. Los Alamos National Laboratory, an affirmative
action/equal opportunity employer, is operated by the Los
Alamos National Security, LLC for the National Nuclear
Security Administration of the U.S. Department of Energy
under contract DE-AC52-06NA25396.

Correspondence to: K. R. Hase (hase@lanl.gov).



Kraynik6 and Liu and Subhash.1 Improved under-
standing of the mechanics of polymeric foam will
allow for the specific design of foam with particular
desired properties. The microstructure of the foam is
related to the way the foam is created, and the mac-
roscopic properties of the foam relate back to the
microstructure. For example, the nonuniform defor-
mation and collapse of microdomains seen in Figure
1(b) illustrate how microscale mechanics could lead
to nonlinear macroscopic behavior. Increased under-
standing in any of the steps along the way—from
the initial constituent chemicals to the ultimate final
bulk behavior—enhances our ability to improve
design and achieve desired goals with polymeric
foam. The interested reader is referred to Gibson
and Ashby3 for an exhaustive discussion of the na-
ture of foams and other cellular materials, such as
webs or metallic foams.

One important application of polymeric foam is as
a packaging material, because of its energy absorb-
ing capacity.3 Foam can absorb the energy of impact
and shock because of its highly nonlinear stress–
strain relationship and its viscoelastic properties. To
understand how foam can absorb mechanical
energy, we look at the stress–strain response of the
material. The typical stress–strain functionality of an
open-cell foam has three distinct regions of behavior.
Low strain yields a nearly linear stress and is often
called the linear elastic region. Moderate strain pro-
duces the stress plateau region, a transition stress
response that has a shape that looks nearly plastic.
Many foams do not experience an actual plastic de-
formation. High strain yields a dramatically rising
stress response as the foam experiences densification
at these high compressions. During impact and
shock, as well as some types of constant force load-
ing, the foam tends to enter the moderate stress
plateau region of the stress–strain response. The
microstructure deforms by various mechanisms as it

is compressed through the stress plateau. The solid
polymeric microstructure is analogous to a system of
mechanical struts. Under stress, the struts flex elasti-
cally, until they start to bend and collapse. It is this
microstructural deformation that allows the foam to
absorb the energy of impact and shock. This stress
to strain relationship, with its three regions, is
clearly seen in uniaxial compression between two
plates.
The interpretation of the mechanical response of

foam, when used in nonlinear geometries, is all the
more complex in light of the many inherently com-
plex mechanical properties of these nonlinear mate-
rials. When the geometry includes any nonplanar
contours, then it is considered to be a nonlinear ge-
ometry. As an example of the coupling of nonlinear
material properties and geometries, we consider an
open-cell polymeric foam that is completely con-
tained within the gap between two initially concen-
tric spheres. The geometry is shown in Figure 3, the
inner sphere has a radius of Ri, and the outer sphere
has a radius of Ro. The inner sphere is free to trans-
late in one linear direction relative to the outer
sphere, with no relative rotation. When the inner
sphere translates, the gap between the spheres is no
longer constant, but rather increases the compression
of the interstitial foam in the direction of translation
and allows for expansion and recovery of the foam
on the opposite half of the sphere. Our purpose is to
present a theoretical method for calculating the per-
formance of nonlinear materials in nonlinear geome-
tries, rather than to focus on synthesis of the foam
materials themselves. The mechanical performance
response of real, nonlinear foam materials will be
compared with the response of an idealized, linearly
elastic material in this same geometry. The two
types of materials are not meant to be interchange-
able. Rather, we are comparing a linear material to a
nonlinear material to show how the nonlinear

Figure 1 Samples of the PDMS foam. (a) A light-microscopic image of a sample of uncompressed PDMS foam (courtesy
of Dana Dattlebaum, Los Alamos National Laboratory, 2004). (b) A light-microscopic image of the same sample of PDMS
foam in a compressed condition (courtesy of Dana Dattlebaum, Los Alamos National Laboratory).
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material complicates the mechanical response of the
whole system. The governing equations and the
assumptions employed in these calculations will be
presented, followed by a series of calculations of the
mechanical performance of foam samples that show
the effect that the nonlinear geometry has on the
overall load behavior of the combined foam and
component system.

THEORY

The problem described above has an exact solution
under certain limiting conditions. The derivation of this
solution goes as follows. Conservation of linear momen-
tum prescribes that the sum of the forces in the system
may be written in the following general form7:

d

dt

Z
VðtÞ

qvdV ¼
Z

VðtÞ

qbdV�
Z
SðtÞ

qvv �ndS�
Z
SðtÞ

r �ndS;

(1)

where r is the Cauchy stress tensor, n is the out-
ward normal to the surface S(t), q is the mass den-
sity, b is a body force acting over the volume, V(t), v
is the velocity vector, and t is time. In general, the
volume and the surface may be functions of time.

We wish to consider the static deformation of a
fixed quantity of material, thus the left-hand side of
(1) must be zero, and the volume, V(t), and the sur-
face, S(t), are constant with respect to time, becom-
ing V and S, respectively. We define our control
volume as the inner sphere, with volume Vi and sur-
face Si. The origin is fixed at the center of the inner
sphere. We have an applied body force acting on the
volume of the inner sphere (i.e., gravity), so the first
term on the right hand side of (1) is retained. No
flow of material takes place across the surface
boundary, so the second term on the right of (1) is
zero. The net force on the foam material is zero;
therefore, the momentum conservation equation
reduces to:

Z
Vi

qbdV ¼
Z
Si

r � n dS: (2)

This states that the body force acting on the inner
sphere must balance the integral of the stress over
the surface of the inner sphere to maintain a static
system.

The force balance in (2) may be further reduced in
complexity by considering the physical arguments of
the system. The total body force acting on the inner
sphere is constant for a given static state, so we may
replace the integral over Vi in (2) with a constant
force, F:

F ¼
Z
Si

r � n dS: (3)

Equation (3) is a general description of the system.
Up to this point, we have not used any particular
geometry or coordinate system. We could choose any
orthogonal curvilinear coordinate system and corre-
sponding geometry, but for the sake of illustration,
we have done this analysis using a spherical system,
as defined in Figure 2. Spherical coordinates are
sometimes defined using different variables; we have
chosen r as the radius, / as the azimuthal angle, and
y as the polar angle. The normal vector to the surface
of the inner sphere corresponds exactly to the radial
unit vector, er, so we can rewrite n dS as er dS on the
inner sphere. Substituting into (3) yields:

F ¼
Z
Si

r � er dS : (4)

Evaluating the dot product in (4) yields:

F ¼
Z
Si

ðrrrer þ rrheh þ rr/e/Þ dS ; (5)

where ey and e/ are the unit vectors in the angular
directions. The system is symmetric in the azimuthal
angle, /; therefore

R
S rr/e/ dS ¼ 0, which results in

F ¼
Z
Si

ðrrrer þ rrhehÞ dS : (6)

Figure 2 The spherical coordinate system used to
describe the geometry.
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We impose the assumption that the foam material
slips perfectly on the surface of the inner sphere, Si,
therefore the solution is subject to the following
boundary condition:

ðB:C:1Þ rrh ¼ 0 at r ¼ Ri; (7)

which states that the shear-stress at the surface is
zero. (Note that this boundary condition is also true
for rr/, but we use the symmetry of the system to
remove the rr/ e/ term.) Application of the bound-
ary condition yields the form of the integral force
balance that must be solved:

F ¼
Z
Si

rrr � er dS: (8)

In spherical coordinates, the area element of the
surface of the inner sphere is dS ¼ R2

i sinðhÞd/dh.
Thus, the force transforms as

F ¼
Zp

0

Z2p

0

R2
i sinðhÞðrrrerÞ d/ dh: (9)

The body force acting on the inner sphere is ori-
ented only in the Z-direction such that F ¼ FZeZ.
Noting that er ¼ cos(y)eZ, we find that the scalar
force component in the Z-direction is

FZ¼
Zp

0

Z2p

0

R2
i sinðhÞ cosðhÞrrr d/ dh: (10)

The generalized form of Hooke’s law gives us a
useful constitutive model to apply to this situation.8

The stress tensor, r, is related to the strain tensor, e,
as

r ¼ Emðtr eÞ
ð1þ mÞð1� 2mÞ Iþ

E

1þ m
e (11)

where m is Poisson’s ratio and E is the elastic modu-
lus scalar value or the Young’s Modulus, and tr e is
the trace of e. Because the Poisson’s ratio is the mea-
sure of how much expansion or contraction the ma-
terial experiences during compression, we see that
we require m ¼ 0 to give us the relationship

r ¼ Ee: (12)

This concept means that the other principal strains
do not contribute to the stress. Under the conditions
described above, the foam is in uniaxial compression
at every angle, y, and r explicitly reduces the stress
to one-dimension, rrr. The local strain, err, in turn, is
a function of the angle y, because the gap between
the two spheres depends on y. Therefore, we can

substitute a scalar function, f(err), for rrr yielding the
total force on the inner sphere:

FZ ¼
Zp

0

Z2p

0

R2
i sinðhÞ cosðhÞf ðerrÞd/dh: (13)

Data from a uniaxial compression test of a foam
material typically results in a curve that may be
expressed as a scalar function of err, the scalar strain.
So we shall set up the problem to use stress–strain
test data. Strictly to illustrate how this is done, let us
consider a Hookean solid with a zero Poisson ratio.
Then the scalar stress function would be written as
f ðerrÞ ¼ EerrðhÞ, and the scalar component of the total
force on the inner sphere in the Z-direction (for the
Hookean material) would be:

FZ ¼
Zp

0

Z2p

0

R2
i sinðhÞ cosðhÞ EerrðhÞ½ �d/dh: (14)

The strain on the material is determined by the
gap-space between the outer and inner spheres,
g(y,d):

errðhÞ ¼ L� gðh; dÞ
L

(15)

where L is the recovered thickness of the material,
and d is the displacement of the inner-sphere along
the direction r when y ¼ p (the negative Z-direction).
When the inner and outer spheres are concentric,
the nominal gap between them is A ¼ Ro � Ri. This
initial gap is likely to be different from L; therefore,
when A < L, the material is initially compressed by
the amount (L � A/L). The gap-space between the
spheres is given in general by

gðh; dÞ ¼ �Ri þ d cosðhÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
o � d2 þ d2 cosðhÞ2

q
:

(16)

If we invoke the thin-gap approximation, then
gðh; dÞthin�gap is found in the limit gðh; dÞthin�gap ¼
lim

A=R!0

h
�Ri þ d cosðhÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
o � d2 þ d2 cosðhÞ2

q i
, which

gives:

gðh; dÞthin�gap ¼ ½Aþ d cosðhÞ�: (17)

The strain on the material, in the thin-gap limit, is
calculated by incorporating (17) into (15):

errðhÞ ¼ L� Aþ d cosðhÞ½ �
L

: (18)

the Z-component of the total force for this idealized
Hookean case is now written as:
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FZ ¼
Zp

0

Z2p

0

R2
i sin h cosðhÞ E

L� Aþ d cosðhÞ½ �
L

� �
d/ dh:

(19)

The possibility exists for material at the top of the
inner sphere (in the positive Z-direction) to become
completely decompressed and to even separate from
the outer sphere on the opposite side from the com-
pressive displacement. The boundary condition (7)
means that the perfect slip of the material allows it
to freely slip away from the sphere for strains that
are less than zero. A step function may be factored
into the calculation to ensure that the strain on the
material never (computationally) becomes negative.
The step function has a value of zero for any err(y)
less than or equal to zero, a value of one for any
err(y) greater than zero.

We can now extend the arguments used for the
Hookean case to the nonlinear case where the elastic
modulus of the material is a function of the strain. In
general, the elastic modulus is a fourth rank tensor,
E. We can extend our one-dimensional model by sub-
stituting the uncoupled component of the elastic ten-
sor in the radial direction, written as Errrr(err), for the
linear elastic modulus (which is a scalar), E(err), not-
ing that it is solely a function of err. This is necessary
because we intend to use the uniaxial compression
data from experiments to give us the stress–strain
relationship for the nonlinear foam material. When
we make this extension to the model, the Z-compo-
nent of the force for these types of nonlinear foams is

FZ ¼
Zp

0

Z2p

0

R2
i sin h cosðhÞ EðerrÞð Þ d/ dh: (20)

We can use (20) to predict what the load-perform-
ance will be for a spherical geometry and a poly-
meric foam material that is described by E(err).

RESULTS

The above illustration using a theoretical Hookean
material is helpful to show how the nonlinear mate-
rial adds complexity to the load performance behav-
ior. We therefore present the responses of both
materials to continue with this illustration. The three
geometries shown in Figure 3 provide insight into
the effect that the nonlinear geometry has on the
component level performance. The first geometry,
shown in part (a), is the uniaxial compression, where
the material is compressed between two flat platens.
The stress–strain relationships produced by this
geometry are plotted for both the Hookean material
and Foam A. Foam A is a real PDMS foam, and the
data presented for the stress–strain response were

taken by means of mechanical load-frame testing. In
this case, a circular platen of known area was used
to compress this foam sample against a platen with
a much larger area. The stress was found by normal-
izing the load by the area of the smaller platen, and
the strain on the material was found by normalizing
the platen position by the initial position of the
platen. The uniaxial compression test data taken for
Foam A displays the three characteristic regions of
stress–strain response that are typical of foam mate-
rials: a linear response at low strains, a distinct
stress plateau at mid-strains, and a steeply rising
stress response at high strains. The elastic modulus
of the theoretical Hookean material is comparable to
the average modulus of the foam, which facilitates
the comparison of the two materials. Part (b) of Fig-
ure 3 shows the load performance of both materials
in a coupled geometry. This calculation is achieved
by considering two samples of the material between
three parallel plates. The first sample is between the
middle and bottom two plates of the system (as in
the linear compression test). A second sample is
positioned between the middle plate and a third
plate on the top. The material samples are circular
discs of diameter, D, and relaxed thickness, L. The
force required to move the center plate by an
imposed deflection of d is plotted in part (b) for both
materials. This geometry is an intermediate step
from the uniaxial compression and the third type of
geometry, which involves highly nonlinear nested
spheres. Part (c) of Figure 3 shows the load perform-
ance when either the foam material or the Hookean
material is positioned between the spheres. The
inner sphere is deflected in the Z-direction by a dis-
tance d, and the net force acting on the inner sphere
is calculated from (19).
Comparing part (a) to part (b) shows how the

interplay of the simultaneous compression and
decompression of the materials changes the load
performance. The force required to move the middle
plate down (part b) is a function of the stress acting
on both the top and bottom materials, as opposed to
uniaxial compression (part a). This calculation was
carried out with an initial compression of A ¼ 0.2 L
for both the Hookean and the foam materials, and
the diameter to thickness ratio is D/L ¼ 63.5. It is in-
structive to first consider the response of the Hoo-
kean material (dashed curve) in part b. The top
sample of material unloads while the bottom sample
loads as the deflection increases. The top sample
continues to unload until the deflection is such that
the material returns to the recovered thickness, L.
The material releases from the top plate upon fur-
ther compression from the middle plate because of
the perfect-slip boundary condition. The top sample
releases from the middle plate at a strain of exactly
d/L ¼ 0.2, which is the amount of precompressed
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strain applied to the material. As the top sample
releases, the slope of the curve changes abruptly;
above 0.2, the slope is exactly 1/2 that of the slope
less than 0.2. This nonsmooth transition tells us at
what strain the competition between the top and
bottom material samples no longer contributes to the

load performance. Above a strain of d/L ¼ 0.2, the
stress is only a function of the compression of the
lower material.
We can now understand what happens to the non-

linear foam material in the same geometry shown in
part (b) of Figure 3. The solid curve in the plot in

Figure 3 A set of compression tests on Foam A and the Hookean solid in different geometries. The recovered thickness
of the material is L. In the spherical geometry, the inner sphere has radius Ri, the outer sphere has radius Ro, and the pre-
compression is A ¼ Ro � Ri. (a) The stress–strain relationship measured by uniaxial compression of Foam A and the Hoo-
kean material starting from the uncompressed state (A ¼ 0). (b) The force performance of Foam A and the Hookean
material in the linear compression and expansion test (A ¼ 0.2L). (c) The force performance of Foam A and the Hookean
material in the spherical compression test. The inner sphere is deflected in the Z-direction by a distance d.
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part (b) shows the response of the foam (Foam A).
During the unloading region of the strain (from 0 to
0.2) when the top sample of foam decompresses, the
shape of the curve is different from that of the curve
in part (a). This difference means that the geometry
of the system has altered the behavior of the load
performance at the component or system level. We
observe that the foam curve rises more gradually
than in part (a), and that the slope of the curve is
more uniform. That is, there is no inflection point in
the three-platen geometry, and the effect of the
stress-plateau is much less evident. Above the strain
of d/L ¼ 0.2, the shape of the foam curve takes on
the high strain characteristics that we would expect
for the uniaxial compression as the top sample
unloads at high strains. The behavior seen in this
relatively simple geometry helps us to understand
the coupling of materials and geometry.

The highly nonlinear geometry shown in part (c)
of Figure 3 shows the performance of the materials
when confined to the gap between two spheres. The
force, as calculated from (20), is plotted for the two
materials in part (c) which show how the nonlinear-
ity of the geometry affects the performance. The
most dramatic observation we make is how the Hoo-
kean curve has become nonlinear. In the concentric
sphere geometry, the materials are simultaneously
loading and unloading continuously at different
polar angles. This means that the force response,
even for the linearly elastic material, is driven by the
nonlinear nature of the spherical shape, which results
in the nonlinear load-deflection curve. Linear materi-
als can have nonlinear compression performance sim-
ply due to the geometry in which they are confined.

The coupled nonlinearity of the geometry and the
foam material exhibit some important features. The
force response curve plotted in part (c) for the foam
has a different shape compared to the stress–strain
curve in the uniaxial compression geometry shown
in part (a). The stress plateau has been deempha-
sized, and the inflection point that is characteristic of
this region no longer exists. This change is caused
by the nonlinear geometry. All of the stress states of
the foam are sampled continuously, from the mini-
mum at the top to the maximum at the bottom. This
means that the nonlinear geometry is physically
smoothing out the influence of the low-strain and
mid-strain region of the foam’s stress–strain
response while causing the high-strain region to be
more important.

The effect of the high strain densification region
seems to dominate the force response. The highest
load at the bottom of the inner sphere (/ ¼ p) com-
presses the foam material to strains high enough to
experience the densified region. The stress in the
high-strain region of the nonlinear foam’s stress–
strain response is dramatically larger than the mid-

range plateau. This leads to an overall performance
for the foam material that is dominated by a smaller
area when compared with the Hookean material
response in the same geometry.
We see this increased load concentration in Figure

4, which shows the load distribution on the inner
sphere at d/A ¼ 0.5 for both materials and shows
the response surfaces for both materials as the
deflection varies. These results show how differently
the Hookean material performs when compared
with the foam material. These results also show
where the load is carried by the materials (in this
case at a strain of d/A ¼ 0.5). The Hookean material
carries the load evenly as a function of radius, when
viewed from the bottom. This is analogous with the
exact solution of a similar system where only the
lower hemispheres are considered. In the hemispher-
ical case, the compression of the Hookean material
produces a distribution of force that is exactly equal
to the projection of the hemisphere onto a plane,
that is, an exact circular distribution. This circular
distribution increases radially, in direct proportion
to the imposed strain, just as we see with the full
spherical solution in Figure 4. This linearity in load
distribution is seen graphically in the contoured sur-
face plot on the lower left side of Figure 4. The con-
tours showing the load are equidistant from one
another on the vertical (Force) axis. The load per-
formance of the foam material is quite different from
the Hookean material. The load is focused on the
polar region of the inner sphere, not equally distrib-
uted. The contours for the foam material (lower right
side of Fig. 4) are concentrated near the upper part
of the vertical (Force) axis, and are nearer the pole
of than for the Hookean material. Again, this indi-
cates that a small area of high-strain, densified foam
takes up most of the load.
We next consider the effect that changes in the

uniaxial stress–strain response have on the load-dis-
placement performance of two different foams. Part
(a) of Figure 5 shows two stress–strain response
curves for Foams A and B. Foam B is also a hydro-
gen-blown PDMS foam. In the case of Foam B, the
stress plateau mid-region has been greatly enhanced
compared to that of Foam A. In other words, the
stress plateau of Foam B has a higher average value
than that of Foam A. At high strains, the stress–
strain response of Foam B has the same slope as
Foam A. The plot of the force performance pre-
sented in part (b) of Figure 5 compares Foam A and
B when confined in the concentric sphere geometry.
The plot shows that the large difference in the
stress-plateau region produces a comparatively small
change in the performance of the two foam samples.
The performance of Foam B does have a higher force
above ðdþ ðL� AÞÞ=L ¼ 0:4. This is consistent with
the complete unloading of the top half of the sphere;
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at this strain, the foam experiences only compres-
sion. Because the initial compression of the material
is ðL� AÞ=L ¼ 0:2, the top region of the material is
unloaded when the imposed deformation is higher
than ðdþ ðL� AÞÞ=L ¼ 0:2.

Variations in the microstructure that control how
the foam collapses under strain seem to have little
impact on the overall performance of the two foam
materials when confined in the spherical geometry.
We commented earlier that the mid-range stress pla-
teau region of a foam’s stress–strain response curve
is why foams are such good cushions. We also said
that many static loads are designed to place the
strain in this region. In this nonlinear geometry, the
force performance curve is not highly sensitive to
changes in the mid-range stress plateau. This is an
important observation and goes to the heart of why
the geometry so significantly affects the way the
materials perform.

Under the imposed deformation due to the dis-
placement of the inner sphere, the foam experiences

a wide range of stress states. The stress at / ¼ p/2
(the equator) is always due solely to the precompres-
sion of the foam. The stress on the foam at every
point between / ¼ p/2 and / ¼ p increases continu-
ally from err ¼ ðL� AÞ=L to err ¼ ðdþ ðL� AÞÞ=L
because the material experiences only compression
in this region. The total force applied to the inner
sphere required to impose the deformation, d, is
averaged over the whole nonlinear surface of the
sphere. Because the stress at the pole, / ¼ p, is very
high compared to the stress in the stress plateau
region, the contribution from this densified portion
of the foam dominates this surface averaging.
When the condition holds that A þ d � L and the

top region of the sphere has completely unloaded, a
void gap will form at the top pole as shown in Fig-
ure 6. Therefore, we examined the properties of the
foam that could be changed to reduce or eliminate
this void gap from forming by increasing the load
for a particular deflection. The results from three dif-
ferent foam samples are shown in the plot in Figure

Figure 4 Analysis of the load distribution on the surface of the inner sphere during the spherical compression test com-
paring the linear Hookean material and Foam A, the nonlinear polymeric foam material. The top left figure shows the
load distribution contours on the inner sphere for the Hookean material at an imposed deflection of d ¼ 0.5. The bottom
left figure shows the load distribution on the inner sphere for the Hookean material as a function of the polar-angular
position, y, and the imposed deflection d. The top right figure shows the load distribution contours on the inner sphere
for Foam A at an imposed deflection of d ¼ 0.5. The bottom right figure shows the load distribution on the inner sphere
for Foam A as a function of the polar-angular position, y, and the imposed deflection d. The distribution for Foam A is
significantly different than the distribution for the Hookean material. The load is concentrated in a small area near the
bottom of the sphere for Foam A whereas the load is evenly distributed for the Hookean material.
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6. The plot shows the overall force response to
imposed deformation in terms of the amount of gap
that forms at the top of the sphere. The superim-
posed diagram shows the location of the void gap in
question, which occurs at / ¼ 0. The three different
materials used in this test have slightly different
properties. Foam A has a thickness to radius value
of L

Ri
¼ 1

127 and a density of 0.40 g/cm3. Foam B has a
thickness to radius value of L

Ri
¼ 1

127 and a density of
0.48 g/cm3. Foam C has a thickness to radius value
of L

Ri
¼ 5

508 and a density of 0.40 g/cm3. Otherwise,
the materials are the same PDMS polymer.

The force required to form the void gap is differ-
ent for each of the three foam materials, while the
shape of the void gap is the same because it is only
a function of the geometry. The amount of force
required to generate the void gap for Foam C is
much higher than either Foam A or Foam B. This is
clearly true since we have increased L, and the con-
dition above is not as easily met to form a void gap.
Both Foam A and Foam C have the same density, so
the key to the improvement in the force perform-
ance, concerning the formation of the void gap, is
the increased recovered thickness. The difference in
density plays a somewhat lesser role in the improve-
ment in the force performance of Foam B over Foam
A. The strong influence of purely geometric differen-
ces is shown in the two plots in Figure 6. These plots
show the size of the void gap as a function of the
force and the imposed deformation for the two ma-
terial thicknesses. Each of these materials illustrates
just how important the coupled material-properties
and nonlinear-geometry is to the overall load per-
formance of combined systems. The load perform-
ance is most sensitive to the relationship of the
thickness to the constrained volume in which the
foam resides.

CONCLUSIONS

We have explored how the nonlinear compressive
properties of materials can couple with nonlinear
geometries in component applications to produce
surprising alterations to the overall system response.
Our test case was the system where a thin layer of
foam was contained in the gap region between two
initially concentric spheres. The force applied to the
inner sphere to produce the desired deflection was
used as the performance metric for this nonlinear
system. Simple uniaxial stress–strain data for the
foam do not predict how the foam materials will
behave in this type of application, and the specific
geometry must be included in the analysis to predict
how the system will respond.
We find that even model systems of materials with

linearly elastic behavior exhibit a nonlinear compo-
nent-level response when used in nonlinear geome-
tries. Polymeric foams exhibit an even more dramatic
change in component-level behavior when situated in
nonlinear geometries that is not observed in standard
linear compression tests. The spherical geometries
tend to concentrate the force in a localized area, and
this gives greater importance to the higher strain
regions of the foam stress–strain response. In addition
the geometry gives less weight to the foam’s mechan-
ical response in the low to mid range of the stress–
strain curve. In fact, the energy absorbing properties
that foam materials exhibit do not have a large effect
on component-level performance.

Figure 5 The stress and force response due to the
imposed compression and deflection of foam samples A
and B. The key difference between the foam samples is in
the mid-range of the stress–strain curve. (a) The stress–
stain relationships for Foam A and Foam B are compared.
The mid-strain range or stress-plateau of Foam B has a
higher stress response than Foam A. (b) The calculated
force response of Foam A and Foam B in the spherical ge-
ometry. This plot shows that a large difference in the
stress-plateau produces a small change in the performance
of the two foam samples. Variations in the microstructure
that control the mid-strain range behavior of the foam
samples seem to have minimal effect on the magnitude of
the stress response of these two foam samples. A small
variation in the qualitative shape of the response of Foam
B is seen when compared with Foam A.
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These findings have provided critical insights to
material designers who are engineering new genera-
tions of materials with enhanced component-level
performance. The properties that give polymeric
foam good cushioning abilities, such as the distinct
stress plateau region of the stress–strain response,
are transformed by the distribution of load that takes
place in the nonlinear coupling in these types of
applications. A clear understanding of the way the
foam behaves at the constitutive level is essential to
predicting the overall system or component level
performance, and any load-performance model
needs to include the geometry of the component to
predict the real response.
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Figure 6 Plot of the total force on the inner sphere as a function of the void gap at the top of the sphere (where the
angle is y ¼ 0). The void gap is plotted (as a function of the polar angle and the normalized force on the inner sphere) in
three-dimensions for the geometries determined by the two thicknesses of the foam materials presented. Clearly, Foam B
and Foam C both perform more strongly than the Foam A. Foam C, with a thickness 1.25 times that of Foam A and Foam
B, requires much more force to form a void gap than Foam A or Foam B, both with a relative thickness of 1 (Lo is the ref-
erence length scale.).

COUPLING OF NONLINEAR MATERIALS AND GEOMETRIES 1713

Journal of Applied Polymer Science DOI 10.1002/app


